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Abstract: Point clouds derived using structure from motion (SfM) algorithms from unmanned aerial
vehicles (UAVs) are increasingly used in civil engineering practice. This includes areas such as
(vegetated) rock outcrops or faces above linear constructions (e.g., railways) where accurate terrain
identification, i.e., ground filtering, is highly difficult but, at the same time, important for safety
management. In this paper, we evaluated the performance of standard geometrical ground filtering
algorithms (a progressive morphological filter (PMF), a simple morphological filter (SMRF) or a cloth
simulation filter (CSF)) and a structural filter, CANUPO (CAractérisation de NUages de POints), for
ground identification in a point cloud derived by SfM from UAV imagery in such an area (a railway
ledge and the adjacent rock face). The performance was evaluated both in the original position
and after levelling the point cloud (its transformation into the horizontal plane). The poor results
of geometrical filters (total errors of approximately 6–60% with PMF performing the worst) and a
mediocre result of CANUPO (approximately 4%) led us to combine these complementary approaches,
yielding total errors of 1.2% (CANUPO+SMRF) and 0.9% (CANUPO+CSF). This new technique
could represent an excellent solution for ground filtering of high-density point clouds of such steep
vegetated areas that can be well-used, for example, in civil engineering practice.

Keywords: ground filtering; point cloud; UAV; principal component analysis

1. Introduction

In engineering practice, unmanned aerial vehicles (UAVs) equipped with cameras
are now increasingly used for the acquisition of 3D data. However, it is often difficult to
acquire detailed data of specific terrain profiles such as steep rugged rock terrain covered
with vegetation. Such terrain is common in the vicinity of linear structures (railways, roads,
etc.) as well as in natural areas including protected areas in the mountains and other nature
reserves. Although such steep rugged terrain can be pleasing to the eye, it can also pose a
major risk to safety. This is particularly true for the aforementioned linear constructions
where objects falling from such slopes can cause potentially lethal accidents not to mention
the financial damage (e.g., a train derailed due to a boulder on the track). For this reason,
safety measures (e.g., netting preventing objects from falling) are widely employed.

These measures are, however, costly and, for this reason, a thorough consideration
of where, what type and to what extent to apply them is needed. This, in turn, requires
quality data for decision making. Field surveys can be difficult in such terrain and may
fail to capture the entire area due to poor accessibility. For this reason, remote sensing
methods are increasingly used. In addition to the aforementioned UAV, typically combined
with photogrammetry (especially structure from motion (SfM) or 3D scanning (terrestrial,
airborne/mobile)), light detection and ranging (LiDAR) can be used.
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Once data are acquired, however, it is necessary to acquire terrain data by removing
points representing undesirable phenomena from the dataset such as vegetation or other
objects. Using suitable techniques, vegetation removal can be to a certain extent performed
even before the measurement itself (for example, using the leaf-off period for data acqui-
sition); nevertheless, much of the unwanted data elimination must be performed after
the data acquisition, i.e., through data filtering using various (classification) algorithms.
Filtering algorithms classify the clouds into data describing the surface of the object of
interest (typically terrain) and other data (e.g., vegetation). Of course, the existence of the
points lying directly on the surface of interest in the point cloud is a necessary precondition
for successful filtering.

The point cloud classification for vegetation removal (and/or ground filtering, which
removes vegetation also other objects such as buildings) has been extensively studied (see,
for example, [1–8]), focusing on filtering algorithms based on surface geometry. Many
geometry-based algorithms, such as the progressive morphological filter (PMF, [9]), the
simple morphological filter (SMRF, [10]) or the cloth simulation filter (CSF, [11]), have been
implemented in commercial programs (Agisoft Metashape, 3D Reshaper, etc.). For the
algorithm to yield optimal results, it is, however, usually necessary to choose a correct
combination of parameter settings for the given terrain type and vegetation coverage,
which can be often problematic especially in difficult terrains. Filtering algorithms are
highly suitable for LiDAR data processing as LiDAR, thanks to its capability of registering
multiple returns after a partial penetration through vegetation, can acquire data even below
the superficial vegetation cover [12–14]. LiDAR data are typically acquired by high-altitude
scanning, which is known to be associated with a problematic identification of almost
vertical terrain and may be unsuitable for a detailed evaluation of rugged terrain due to
their relatively low density of just a few points per square meter. LiDAR scanners that
can be mounted on the UAVs and can provide a detailed recording of the surface are at
present prohibitively expensive. For this reason, the SfM processing of UAV imagery is a
promising alternative.

With the boom of unmanned aerial vehicles in the last decade, many applications of
such systems have been reported; for example, in the fields of archaeology [15], ecology [16],
natural disaster monitoring [17–19], solar radiation [20], bark beetle infestation [21], the
differentiation of various vegetation types [22] or reclamation [23], usually evaluating
UAV data using aerial photogrammetry (the SfM method). Compared to LiDAR data,
photogrammetric data are much more sensitive to the quality of imagery, which is defined
by the correct sensing methodology (distance, resolution, sensing angle, etc.) and by the
setup of the computational process [24–27]. Several studies have also combined laser
scanning and photogrammetry using synergies between the two ([28,29]).

However, even if dealing with highly detailed data, the correct adjustment of the
parameters of the filtering algorithms, especially in rugged terrain, may be very impor-
tant for achieving high detail and the best possible description of the surface. Several
studies [30–32], therefore, have focused on comparing and testing filtering algorithms
on specific data to determine the best possible algorithm settings; such studies often use
open-source software implementing one or more of such algorithms for this purpose
([33,34]).

Most ground filtering algorithms have been created for the analysis of standard high-
altitude airborne scanning data in which the ground surface appears principally flat (and
almost level). As shown in multiple studies [35–38], many filtering algorithms can be
applied on low-slope terrain with relatively good results. The automatic filtering of SfM
data acquired from extremely steep and rugged terrain (rock faces, overhangs, etc.) is,
however, difficult and must often be performed manually, which is extremely laborious. In
view of the need for such data for safety purposes, we aimed in this study to (i) optimize the
standard geometric filters (PMF, SMRF, CSF) for filtering UAV-derived SfM data acquired
in a steep rugged terrain and evaluate their performance in the original orientation and
(ii) after levelling the data into the horizontal position, expected to be more suitable for
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the operation of these filters. In addition, we aimed to (iii) assess the performance of a
principally different CANUPO filter, (iv) investigate the potential synergisms between the
CANUPO and geometrical filters by using a sequential combination of these filters and
assess the performance of such a combination and (v), if the results permit, to propose a
new workflow for the vegetation filtering of such data.

2. Materials and Methods
2.1. Data for Testing

Data for testing covered an area of 157 × 49 m with an elevation difference of 47 m
(see Figure 1 for the aerial view of the study area). Due to the steep character of the terrain,
the imagery was acquired with a variable angle of acquisition (perpendicular to the terrain);
the UAV was manually piloted and the image acquisition was performed more or less
from a constant distance of 15–30 m perpendicular to the terrain. In all, 248 images with
a resolution of 4056 × 3040 px were taken. The axis of the images was approximately
perpendicular to the terrain (i.e., most images were oblique relative to the vegetation).
For georeferencing, 11 ground control points (GCPs) were used, 3 of which were in the
upper part of the slope/rocks and the remainder on more accessible spots along the base
of the slope. Individual GCPs were georeferenced using a total station connected to the
coordinate system by the measurement of three distant points determined by the GNSS
RTK receiver. This method was used because, in view of the terrain characteristics, a large
part of the sky was obstructed by the slope, thus reducing the accuracy of the GNSS RTK
measurement directly on site due to the unavailability of a sufficient number of satellites.
In addition, 30 control points lying on the rocks (without vegetation obstruction) were
determined using a total station with a non-prism distance meter and their position was
compared to the original point cloud with the differences not exceeding 3 cm.
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Figure 1. Aerial view of the area of interest. Figure 1. Aerial view of the area of interest.

It is necessary to note that this georeferencing was only performed in view of the use
of this point cloud for purposes outside of this study as it had no effect on the evaluation
of the algorithms for vegetation filtering (the absolute accuracy of the points within the
coordinate system was not assessed). The data were processed in Agisoft Metashape
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v1.6, cropped to the area of interest and subsampled to achieve a final resolution of 5 cm
(Figure 2) with a final number of 2,520,442 points.
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As the manual collection of GNSS RTK data in the presented type of terrain is virtually
impossible (poor accessibility, poor GNSS RTK signal, too many points needed for a
detailed description of the rugged terrain), verification data were obtained by a meticulous
manual cleanup (Figure 2). We intentionally opted for data of a relatively poor quality with
a higher number of holes and interferences as these are typical of the data used for similar
purposes in everyday practice. To provide a better idea of the data character, see the details
in Figure 2.

2.2. Used Ground Filtering Algorithms

Filters implemented in freely available software solutions were used in this study,
namely PMF and SMRF, both of which are included in the pdal software package (https://
pdal.io/, accessed on 7 June 2021), and CSF and CANUPO, both included in CloudCompare
software version 2.11.3 (www.cloudcompare.org, accessed on 7 June 2021). Below, the
basic principles of the individual filters will be briefly described and references to papers
containing in-depth descriptions are provided for individual filters.

The geometrical filters (PMF, SMRF, CSF), in general, work on the principle of creating
a first iteration of the terrain as a lowest point in a regular or non-regular grid. This
provisional terrain model is further refined by various geometric methods with the use of
points of an original point cloud. Those points of the original point cloud that do not exceed
a defined distance from the provisional terrain model are then classified as surface points.
Detailed principles of individual geometrical filters are described in [9–11], respectively; the

https://pdal.io/
https://pdal.io/
www.cloudcompare.org
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parameters that can be set for individual filters are shown in Table 1. As the algorithms are
constructed for approximately a horizontal ground surface, the optimization of the settings
was also performed on levelled data (i.e., data transformed by fitting a plane through the
data and the subsequent rotation to make this plane horizontal; this transformation did not
change the spatial relationships).

Table 1. Tested settings of the filters.

Method Parameter Values

PMF

Cell size (m) 0.1; 0.3; 0.5; 1.0
Initial distance (m) 0.10; 0.5; 1.0
Max distance (m) 0.5; 1.0; 2.5

Max window size (m) 1.0; 5.0; 10.0
Slope 1.0; 3.0; 5.0; 10.0

Exponential Yes

SMRF

Cell (m) 0.05; 0.1; 0.3; 0.5; 1.0; 2.0
Scalar (m) 0.5; 1.0; 1.25; 2.5; 5.0

Slope 0.15; 1.0; 3.0; 5.0; 10.0
Threshold (m) 0.05; 0.1; 0.25; 0.5; 1.0
Window (m) 20.0; 10.0; 5.0

CSF

Cloth resolution (m) 0.1; 0.2; 0.3; 0.4; 0.5; 0.75; 1.0
Classification threshold (m) 0.1; 0.2; 0.3; 0.4; 0.5; 0.75; 1.0; 2.0; 2.5

Scene Steep slope
Slope processing Yes

Max iterations 500

The CANUPO filter uses an altogether different approach, the principle of which was
published in [39]. The evaluation is based on the examination of the spherical neighborhood
of the near surroundings of the point to which a PCA is applied using the eigenvalues
of a matrix constructed from the points from the neighborhood. In this way, this filter
is able to well-identify classes with different superficial structures; in our case, these are
represented by continuous surfaces and scattered points (such as individual leaves). This
is done through a classifier in which the individual neighborhood sizes (dimensions) and
the boundaries separating the classes are stored. A higher number of dimensions improves
the quality of the classification but increases the computational time. This method works,
therefore, quite differently from the other tested algorithms and does not depend on the
position or rotation of the objects at all; this might be a great advantage in the situation
studied in this paper.

2.3. Filter Application on Levelled Data

The steepness of the data profile represents an obvious problem for standard filters
because they are (as mentioned) designed primarily for large-scale data where the terrain
is essentially flat (horizontal) and vegetation is above it. The transformation of the data
into the horizontal position, the performing of the classification and the returning of the
already classified data to their original position by an inverse transformation appears
to be a relatively simple and logical solution to this problem and should improve the
results dramatically. It should be mentioned that for extremely rugged data that cannot be
reasonably levelled, it could be necessary to split the data into areas of a similar slope and
to “level” and calculate each part separately. The procedure can be applied to any method.

2.4. The Proposed New Workflow Combining CANUPO and a Geometric Filter

The CANUPO classification method distinguishes well between surfaces (smooth
surfaces, basically 2D formations in space) and vegetation. In principle, the distribution
of the vegetation points is to a large degree random, creating clouds of random noise.
However, the treetops or shrubs can in a few cases look similar to surfaces and, thus,
this classification fails here. This often occurs when evaluating photogrammetric images
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using the SfM method, the algorithm of which fundamentally creates an assembly of
miniature flat areas (this feature can be partially suppressed by using a more detailed
resolution). However, these areas are already quite far from the surface of interest (terrain)
and can, therefore, be identified quite safely by one of the geometric filters. Therefore, the
classification variants where CANUPO was applied to the levelled point cloud followed
by a geometric filter and, finally, the cloud transformed back to its original position were
proposed and tested in this study in addition to testing individual algorithms.

2.5. Filter Quality Evaluation

The testing of the effectiveness of individual (or combined) filters was always per-
formed in the same way:

1. Application of the particular algorithm on the testing data (dataorig) with chosen
settings (resulting in the acquisition of the datafiltered).

2. Determination of a Type I error by the evaluation of the distance from the filtered
(datafiltered) to the reference manually cleaned (dataref) point cloud in CloudCompare.

3. Determination of a Type II error by evaluating the distance from the manually cleaned
reference data (dataref) to the datafiltered in CloudCompare.

4. Calculation of the evaluation criteria.
5. Steps 1–4 are repeated for all tested filters and settings variations and the resulting

evaluation criteria are compared.

A Type I error was calculated by deducting the distances from the datafiltered to the
dataref. Where there were “holes” in the reference data, the distance was calculated to the
nearest point of the other cloud. Points with the distance between the two clouds greater
than a set value (in our case, this value was, in view of the resolution of 0.05 m, set to 0.1 m)
that remained in the cloud although they should have been removed were considered a
Type I error. In other words, if the filtered cloud did not have a correct nearest neighbor,
the distance was greater than the threshold, which means that such a point should have
been removed and was not.

A Type II error was determined by the equivalent algorithm with the only change
being the inverse order of the clouds (the distance was calculated from the dataref to
the datafiltered). The distance greater than the chosen value meant that the point was
eliminated from the cloud during filtering although it should have remained in it. Such
points were considered a Type II error. In other words, if the reference cloud did not have a
correct nearest neighbor, the distance was greater than the threshold, which means that the
respective point was missing in the filtered cloud and was incorrectly removed. For the
overall evaluation, a simple summation of Type I and Type II errors was used.

For each filter, the evaluation was performed for all combinations of realistic parameter
settings in the particular step and, subsequently, the combination yielding the best results
from the perspective of the total evaluation (summation of Type I and Type II errors) was
selected; the combinations are presented below. The tested parameter settings are presented
in Table 1. For CANUPO filtering, a prm classifier file was created containing definitions of
scales and values for classification; 10 scales with a regular step of 0.1 m (0.1; 0.2; 0.3; 0.4;
0.5; 0.6; 0.7; 0.8; 0.9; 1) were used. These tests were performed also for the levelled data. As
in the case of the individual filters, the settings were also optimized for each combination
of the filters.

3. Results

The testing results are shown in Tables 2 and 3; as the number of points was high, the
effectiveness is described in per cent (the total number of points of the unfiltered point
cloud dataorig is considered 100%).
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Table 2. Filtering results: original data (not transformed).

Method Parameter Optimal Value Type I Error (%) Type II Error (%) Total Error (%)

PMF

Cell size 0.5

1.7 58.4 60.1
Initial distance 1.0
Max distance 1.0

Max window size 1.0
Slope 1.0

SMRF

Cell 0.3

8.8 3.0 11.8
Scalar 1.0
Slope 10.0

Threshold 1.0
Window 10.0

CSF
Cloth resolution 0.1

7.1 8.9 16.0
Classification threshold 2.0

CANUPO - - 3.6 0.3 3.9

Table 3. Filtering results: data transformed into a horizontal position.

Method Parameter Optimal Value Type I Error (%) Type II Error (%) Total Error (%)

PMF

Cell size 0.5

3.8 26.7 30.7
Initial distance 1
Max distance 1

Max window size 1
Slope 1

SMRF

Cell 0.3

6.1 1.5 7.6
Scalar 0.5
Slope 5.0

Threshold 0.25
Window 10.0

CSF
Cloth resolution 0.1

4.4 1.8 6.2
Classification threshold 0.1

CANUPO+PMF

Cell size 0.5

0.5 10.4 10.9
Initial distance 1
Max distance 1

Max window size 1
Slope 1

CANUPO+CSF
Cloth resolution 0.2

0.5 0.4 0.9
Classification threshold 1.0

CANUPO+SMRF

Cell 0.3

0.7 0.5 1.2
Scalar 0.5
Slope 3.0

Threshold 0.5
Window 10.0

Although the overall efficiency of the individual algorithms differs greatly when ap-
plied to data in the normal (original) position, it can be said that it is, generally, insufficient
in all algorithms. The large number of erroneously discarded points (type II error) is a
significant problem because important points on the edges, projections and apices (see
Figure 3) are erroneously removed. Compared to geometric filters (PMF, SMRF, CSF),
CANUPO shows a significantly higher efficiency but still suffers from a high number of
points that have erroneously not been removed. This is because this method detects shapes
(surfaces) and such surfaces can occur also, for example, in the canopy or tree trunks, thus
mimicking a smooth surface of the ground.
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After levelling the data, the errors of the geometrical filters dropped by about half. A
significant improvement of the Type II error was also observed but still the results were
not of a sufficient quality. Hence, the combination of CANUPO + a geometrical filter
was applied to the data. The combination was beneficial as these filters are in a way
complementary; the CANUPO filter performs well in removing low vegetation while the
geometrical filter is highly successful in removing the tree trunks and crowns that are at a
higher distance from the ground.

The combined methods performed clearly the best with a total error of approximately
1%. The combination of CANUPO and CSF yielded slightly better results than CANUPO
combined with SMRF; the combination with PMF yielded still inferior results. A visualiza-
tion of the filtering success is presented in Figure 3.

4. Discussion

The commonly used methods for filtering out vegetation from point clouds are based
on the basic geometric premise with the object of interest (usually the ground) being at the
bottom and vegetation on the top. This assumption is true when applying these methods
to large-scale airborne LiDAR scans. However, with the increasing availability of point
clouds-producing data collection methods, the application space is increasingly shifting
towards small-scale industrial and civil engineering applications where the objective is to
acquire the scene without intrusive vegetation cover. In such small-scale applications, the
cheapest and most widely available method of data acquisition is the SfM processing of
UAV-acquired camera imagery, which was also used as a data source in this paper.

In this study, filters, the high effectiveness of which has been reported elsewhere [31]
and [32], were used. Nevertheless, as the testing results indicate, these filters are principally
unsuitable for steep rugged objects: the PMF filter yielded a total error of 60%, SMRF of
11% and CSF of 16%. The percentage expression should be also accompanied by a note
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that the erroneously removed data usually represent edges, projections or apices that are
important from the application perspective as these pose the greatest danger of release and
falling onto the railway track.

A horizontal transformation (levelling), the aim of which was to make the data more
suitable for the standard geometrical filtering approaches, improved the results by about
half but still did not lead to sufficiently good results (total errors of PMF 30%, SMRF 8%,
CSF 6%; see Figure 3). The effectiveness of this approach could be theoretically improved
by splitting the data into flatter parts, levelling such data, performing partial calculations,
combining the results and re-assembling the fully filtered cloud and inverse transformation
to the original position; this approach is, however, fairly laborious and the results are still
uncertain. It should be noted that the mechanism of levelling (rotation) results in virtually
tilted trees, which might affect the geometrical filtering as the vertical distances of, for
example, the lowest branches of the trees or shrubs from the model surface can change,
which can affect the performance of the geometrical filters (not of CANUPO as that filter
uses a different principle independent of the rotation). However, as it does not alter/warp
the spatial relationships within the cloud, this is a minor issue compared to the benefits
that the rotation brought to the performance of the geometrical filters so the trade-off is
still highly beneficial.

The CANUPO filter performed well in removing the “random” low vegetation close
to the terrain but failed to remove much of the trunks and canopy (see Figure 3).

Our assumptions about the synergism of the geometric filters and CANUPO, as
detailed in Section 2.4, were proven to be correct, thus confirming the suitability of their
combined use (note that CANUPO should be applied before the geometrical filter because if
a geometrical filter is used before CANUPO, the result would be practically identical to that
obtained using the geometrical filter alone as the rocks would be clipped in the first step).
As is obvious from Figure 3, geometrical filters tend to clip the rugged terrain whereas the
CANUPO filter tends to correctly identify the terrain (and clean up the immediate vicinity
of the terrain) but incorrectly leaves a relatively high amount of vegetation that can be
found at a greater distance from the identified terrain. This can be then easily removed
by more elastic geometrical filters (i.e., SMRF and CSF) after levelling the CANUPO-
filtered point cloud. The experiments with such a combination of filters confirmed this
hypothesis, resulting in a total error of only approximately 1% after such double filtering
(see Figure 3). Such a result is already sufficient and suitable for most everyday civil
engineering applications.

To the best of our knowledge, this is the first paper sequentially combining two
filters with different principles for vegetation filtering in a steep rugged terrain with
excellent results. This workflow can be highly useful for removing vegetation in all
applications requiring a detailed digital terrain model of steep rugged terrain such as the
safety evaluation of rock faces in the vicinity of public footpaths in nature reserves, above
roads or, as in this case, railway tracks.

5. Conclusions

This study was the first to optimize and evaluate the performance of four filters
available in commonly used software for the vegetation filtering of SfM data acquired
from UAV imagery in a steep and rugged rocky terrain. We concluded that (i) standard
geometric filters (PMF, SMRF, CSF) do not perform well when applied to such terrain as
they excessively remove the terrain irregularities; (ii) after levelling the data by rotating
them into the horizontal position, the results improve but still remain fairly poor. This is
especially true for the PMF filter, which, due to its low elasticity, is completely unsuitable for
such a rugged terrain; (iii) the principally different filter, CANUPO, performed better and,
most importantly, (iv) in a complementary way to the geometrical filters. It performed well
in removing the low vegetation while failing to remove much of the higher vegetation, thus
setting the stage for geometrical filters (SMRF and CSF), which subsequently completed
the data cleanup from vegetation with the excellent success of approximately 1% error
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only. Thus, we can (v) propose that the workflow presented in this paper for vegetation
filtering of such difficult terrain, i.e., CANUPO filtering followed by the levelling of the
point cloud and using the SMRF or CSF filter for removing the remaining vegetation at a
greater distance from the terrain, is a highly suitable approach applicable, for example, in
civil engineering for safety evaluations of steep slopes in the vicinity of linear constructions.
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Mass Movement Monitoring Caused by Torrential Rainfall—A Study on the Talus Cones in the Alpine Terrain in High Tatras,
Slovakia. ISPRS Int. J. Geo-Inf. 2019, 8, 317. [CrossRef]

18. Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Brief communication: Landslide motion from cross correlation of
UAV-derived morphological attributes. Nat. Hazards Earth Syst. Sci. 2017, 17, 2143–2150. [CrossRef]

19. Salvini, R.; Mastrorocco, G.; Esposito, G.; Di Bartolo, S.; Coggan, J.; Vanneschi, C. Use of a remotely piloted aircraft system for
hazard assessment in a rocky mining area (Lucca, Italy). Nat. Hazards Earth Syst. Sci. 2018, 18, 287–302. [CrossRef]

20. Moudrý, V.; Beková, A.; Lagner, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates.
Remote Sens. Lett. 2018, 10, 1077–1085. [CrossRef]
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